Preparation and Spectroscopic and Theoretical Characterization of the Tetrahydroborate Complex $OsH_3(\eta^2-H_2BH_2)(P-i-Pr_3)_2$

Miguel A. Esteruelas,^{*,†} Yves Jean,[§] Agustí Lledós,^{*,‡} Luis A. Oro,[†] Natividad Ruiz,[†] and François Volatron[§]

Departamento de Química Inorgánica, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain, Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain, and Laboratoire de Chimie Théorique (CNRS URA 506, ICMO), Bât. 490, Université de Paris-Sud, 91405 Orsay Cedex, France

Received December 10, 1993

There is considerable experimental evidence indicative of the action of tetrahydroborate compounds as effective catalyst precursors for isomerization, oligomerization and hydrogenation of olefins.¹ In this line, we have previously reported that the complex OsHCl(CO)(P-*i*-Pr₃)₂ in the presence of NaBH₄ serves as a catalyst for hydrogen transfer reactions from 2-propanol to cyclohexanone, acetophenone,² benzylideneacetone, and benzylideneacetophenone.³ Under catalytic conditions, the compound OsHCl(CO)(P-*i*-Pr₃)₂ reacts with NaBH₄ to give initially the tetrahydridoborate complex OsH(η^2 -H₂BH₂)(CO)(P-*i*-Pr₃)₂, which in the presence of 2-propanol descomposes to the tetrahydride OsH₄(CO)(P-*i*-Pr₃)₂.²⁻⁴

The complex $OsH_2Cl_2(P-i-Pr_3)_2$ is also an active catalyst for the hydrogen transfer reactions from 2-propanol to ketones in the presence of $NaBH_4$.⁵ Under catalytic conditions, in this case, the hexahydride $OsH_6(P-i-Pr_3)_2$ can be detected. We have now observed that the formation of $OsH_6(P-i-Pr_3)_2$ from $OsH_2Cl_2(P-i-Pr_3)_2$ and $NaBH_4$ goes by an $OsH_3(BH_4)(P-i-Pr_3)_2$ intermediate. In the present Note, we describe the preparation and the spectroscopic and theoretical characterization of this intermediate.

Treatment of a toluene suspension of $OsH_2Cl_2(P-i-Pr_3)_2$ with NaBH₄, in a 1:10 molar ratio, and methanol (ca. 0.6 mL), at -78 °C, leads to a yellow solution from which is separated a yellow solid. The IR and ¹H and ³¹P NMR spectra of this solid indicate that it is a mixture of the complexes $OsH_3(BH_4)(P-i-Pr_3)_2$ and $OsH_6(P-i-Pr_3)_2$ in a 3:1 molar ratio. At room temperature, the mixture is quantitatively converted into $OsH_6(P-i-Pr_3)_2$ by stirring in methanol.

Different structures are possible for an $OsH_3(BH_4)(P-i-Pr_3)_2$ formulation, depending on the way the $[BH_4]^-$ ligand and the H_3 fragment are bound to the metal. The $[BH_4]^-$ ligand can bind the transition metal with one (η^1) , two (η^2) , or three (η^3) bridging hydrogens. The H_3 fragment can present a trihydride or hydridemolecular hydrogen nature.

The IR spectrum of the yellow solid in Nujol shows absorptions at 2447 and 2351 cm⁻¹ suggesting that the tetrahydroborate anion

- (a) Green, M. L. H.; Munakata, H. J. Chem. Soc. A., 1974, 269. (b) Miller, R. G.; Pinke, P. A.; Stanfer, R. D.; Golden, H. J.; Baker, D. J. J. Am. Chem. Soc. 1974, 96, 4211. (c) Holah, D. G.; Hughes, A. N.; Hui, B. C.; Kan, C. T. J. Catal. 1977, 48, 340. (d) Letts, J. B.; Mazanec, T. J.; Meek, D. W. J. Am. Chem. Soc. 1982, 104, 3898.
- Hui, B. C.; Kan, C. T. J. Catal. 1977, 48, 340. (d) Letts, J. B.; Mazanec, T. J.; Meek, D. W. J. Am. Chem. Soc. 1982, 104, 3898.
 (2) (a) Esteruelas, M. A.; Sola, E.; Oro, L. A.; Werner H.; Meyer, U. J. Mol. Catal. 1988, 45, 1. (b) Esteruelas, M. A.; Valero, C.; Oro, L. A.; Meyer, U.; Werner H. Inorg. Chem. 1991, 30, 1159.
- (3) Estéruelas, M. A.; Sola, E.; Oro, L. A.; Werner H.; Meyer, U. J. Mol. Catal. 1989, 53, 43.
- (4) (a) Werner, H.; Esteruelas, M. A.; Meyer, U.; Wrackmeyer, B. Chem. Ber. 1987, 120, 11. (b) Esteruelas, M. A.; Lahoz, F. J.; López, J. A.; Oro, L. A.; Schlünken, C.; Valero, C.; Werner, H. Organometallics, 1992, 11, 2034.
- (5) Aracama, M.; Esteruelas, M. A.; Lahoz, F. J.; López, J. A.; Meyer, U.; Oro, L. A.; Werner, H. Inorg. Chem. 1991, 30, 288.

coordinates to the osmium atom as an η^2 -H₂BH₂ ligand.⁶ This is in agreement with the 18-electron rule, which predicts for the tetrahydroborate anion of $OsH_3(BH_4)(P-i-Pr_3)_2 a \eta^2$ -coordination mode.⁷ In order to confirm this prediction we perform ab initio calculations in the model adduct $O_{SH_3}(BH_4)(PH_3)_2$. In a preliminary study, the geometries of the three structures which differ by the coordination mode of the $[BH_4]^-$ anion (η^1, η^2, η^2) and η^3) were optimized at the SCF level. At this level, the structure containing the η^2 -H₂BH₂ ligand is 23.9 kcal/mol more stable than that containing the $[BH_4]^-$ anion coordinated as η^1 -ligand, and 28.2 kcal/mol more stable than the structure corresponding to an η^3 -H₃BH group. Moreover, the η^1 and η^3 structures are not stable and collapse to the η^2 one. However, the SCF calculations can not solve the question of the H_3 fragment coordination. The η^2 -H₂BH₂ structures with a trihydride disposition of the three hydrogen atoms and with a hydride-molecular hydrogen arrangement are both minima in the SCF potencial energy surface and have the same energy.

The ³¹P{¹H} NMR spectrum of the mixture in toluene- d_6 shows two singlets at 56.78 and 41.67 ppm, which were assigned to the complexes OsH₆(P-*i*-Pr₃)₂ and OsH₃(BH₄)(P-*i*-Pr₃)₂ respectively. This spectrum is temperature invariant down to -80 °C. However, the ¹H NMR spectrum is temperature dependent (Figure 1). These spectra suggest that in solution there is an intramolecular exchange process involving to the Os(μ -H)B and OsH₃ hydrogen atoms.

The most noticeable signals of the spectrum at -60 °C are three broad resonances of the tetrahydroborate complex with an intensity ratio 2:2:3, at 8.78, -6.78, and -12.89 ppm, which were assigned to hydrogen atoms terminal on boron, bridging and terminal on osmium. Interestingly $T_1(\min)$ values at 300 MHz of 74 and 82 ms were found for the resonances at -6.78 and -12.89 ppm. At first glance, these data could suggest the existence of nonclassical interaction between the hydrogen atoms bonded to the metallic center.8 We note that the structure of the related complex $OsH_3(\eta^2-H_2BH_2)(P(c-C_5H_9)_3)_2$ has been previously determined by a single-crystal X-ray diffraction study.9 However, unfortunately, the terminal hydrogen atoms on the osmium were not located. As a result from this, the trihydrido or hydridodihydrogen nature of these compounds can not be determined. In order to cast light on this problem, the geometries of the two minima (trihydride and hydride-dihydrogen) found at the SCF level were reoptimized at the MP2 level. At this level, the molecular hydrogen complex is not stable and its optimization leads to the trihydride. Only the trihydride structure remains as a minimum in the MP2 potential energy surface. Therefore, the ab initio MP2 calculations indicate that the only stable structure corresponds to a trihydride with a η^2 -H₂BH₂ coordination.

Figure 2 shows the molecular structure of $OsH_3(BH_4)(PH_3)_2$ optimized at the MP2 level. The most conspicuous features of the theoretical calculations are, first that the structural parameters agree well with that found for the complex $OsH_3(\eta^2-H_2BH_2)(P(c-C_5H_9)_3)_2$ by X-ray diffraction analysis⁹ and, second, the hydrogenhydrogen separations between the hydrogen atoms of the OsH_3 unit (1.579, 1.598), are about 0.05 Å shorter than that determined by neutron diffraction investigation in the hexahydride $OsH_6(PC_{12}H_{19})_2$, where an H---H interaction has been proposed.¹⁰

- (9) Frost, P. W.; Howard, J. A. K.; Spencer, J. L. J. Chem. Soc., Chem. Commun. 1984, 1362.
- (10) Howard, J. A. K.; Johnson, O.; Koetzle, T. F.; Spencer, J. L. Inorg. Chem. 1987, 26, 2930.

© 1994 American Chemical Society

[†] Universidad de Zaragoza-CSIC.

[‡] Universitat Autonoma de Barcelona.

[‡] Université de Paris-Sud.

⁽⁶⁾ Marks, T. J.; Kolb, J. R. Chem. Rev. 1977, 77, 263.

 ^{(7) (}a) Mancini, M.; Bougeard, P.; Burns, R. C.; Mlekuz, U.; Sayer, B. G.; Thompson, J. I. A.; Mc Glinchey, M. J. *Inorg. Chem.* 1984, 23, 1072.
 (b) Lledós, A.; Duran, M.; Jean, Y.; Volatron, F. *Inorg. Chem.* 1991, 23, 4440. (c) Volatron, F.; Duran, M.; Lledós, A.; Jean, Y. *Inorg. Chem.* 1993, 32, 951. (d) Jarid, A.; Lledós, A.; Jean, Y.; Volatron, F. *Inorg. Chem.* 1993, 32, 4695.

⁽⁸⁾ Jessop, P. G.; Morris, R. H. Coord. Chem. Rev. 1992, 121, 155.

Figure 1. ¹H NMR spectra (300 MHz, C₇D₆) at variable temperature for the complex $OsH_3(BH_4)(P-i-Pr_3)_2$. The observed T_1 values are written on the peaks.

Figure 2. Molecular structure of the model compound OsH₃(BH₄)(PH₃)₂ optimized at the MP2 level. Selected bond distances (Å): Os-B = 2.305, $O_{s-P} = 2.391, O_{s-H}(1) = 1.817, O_{s-H}(2) = 1.813, O_{s-H}(4) = 1.59,$ $O_{s-H(5)} = 1.579, O_{s-H(6)} = 1.579, B-H(1) = 1.311, B-H(2) = 1.307,$ B-H(3) = 1.195, H(1)-H(5) = 2.309, H(2)-H(6) = 2.301, H(4)-H(6)= 1.579, H(4)-H(5) = 1.598.

From the analysis of the electron density contour map generated by the ab initio MO calculations, we have not found evidences for any electronic interaction between the hydrogen atoms of the OsH_3 unit of $OsH_3(BH_4)(PH_3)_2$.

It has been recently shown that for polyhydrido complexes, $T_1(\min)$ can be calculated by using internuclear distances obtained from neutron or X-ray diffraction studies.¹¹ In order to test the results obtained from the theoretical studies, we have determined the $T_1(\min)$ values for the hydrogen bonded to the metallic center of the model complex $OsH_3(BH_4)(PH_3)_{2}^{12}$ on the basis of the calculated structural parameters. Because at the $T_1(\min)$ temperature the ¹H NMR spectrum of OsH₃(BH₄)(P-i-Pr₃)₂ contains two signals assigned to the hydrogen atoms of the Os(μ -H)₂B and OsH₃ units, we have calculated a $T_1(\min)$ for H₁ and H₂, and other for H₄, H₅, and H₆.¹³ The obtained values converted to the 300-MHz scale (57 ms for for H_1 and H_2 , and 85 ms for H_4 , H_5 , and H_6) agree sufficiently well with those determined experimentally for the related protons of $OsH_3(BH_4)(P-i-Pr_3)_2$.

In addition, it should be mentioned that the $T_1(\min)$ value of the Os(μ -H)B protons is shorter than the $T_1(\min)$ value of the OsH₃ protons. This clearly indicates that the boron atoms have a bigger influence in the relaxation of the $Os(\mu-H)B$ protons than the other atoms of the molecule.

In summary, the reaction of OsH₂Cl₂(P-i-Pr₃)₂ with NaBH₄ leads to $OsH_3(\eta^2-H_2BH_2)(P-i-Pr_3)_2$, which decomposes to $OsH_6(P-i-Pr_3)_2$ i-Pr₃)₂ in methanol at room temperature. Spectroscopic and theoretical studies suggest that the tetrahydroborate compound contains three hydrido ligands with a hydrogen-hydrogen separation of about 1.6 Å. Evidences for any electronic interaction between them have not been found.

Experimental Section

NMR spectra were recorded on a Varian UNITY 300 spectrophotometer. Chemical shifts are expressed in ppm upfield from Me₄Si (¹H) and 85% H₃PO₄ (³¹P). The conventional inversion-recovery method (180- τ -90) was used to determine T_1 . Infrared spectra were recorded with a Perkin-Elmer 783 spectrophotometer.

Preparation of OsH₃ $(\eta^2$ -H₂BH₂)(P-*i*-Pr₃)₂. Under an atmosphere of argon at -78 °C, a suspension of OsH₂Cl₂(P-i-Pr₃)₂ (200 mg, 0.35 mmol) in toluene was treated with NaBH4 (133 mg, 0.35 mmol) and then dropwise with 0.6 mL of methanol. After the reaction mixture was stirred for 30 min, the suspension was filtered. The filtrate was concentrated to dryness in vacuo at room temperature, addition of hexane caused the precipitation of a yellow solid after storing at -78 °C for 2 h. The solvent was decanted, and the solid, was washed with small quantities of cold hexane, and dried in vacuo. A yellow solid was isolated, which according to the IR, 1H, and ³¹P{¹H} spectra turned out to be a mixture of OsH₃(η^2 -H₂BH₂)(P-*i*-Pr₃)₂ and OsH₆(P-*i*-Pr₃)₂ in a 3:1 molar ratio. Spectroscopic data for OsH₃(η^2 -H₂BH₂)(P-*i*-Pr₃)₂ are as follows. IR (Nujol): v(BH) 2447, 2351, v(OsH) 2141, 2115 cm⁻¹. ¹H NMR (20 °C, 300 MHz, C7D8): 88.78 (br, 2 H, $Os(\eta^2 - H_2BH_2))$, 2.04 (m, 6 H, PCHCH₃), 1.12 (dvt, N = 13.7, J(HH) = 7.0 Hz, 36 H, PCHCH₃). ³¹P{¹H} NMR (20 °C, 80.98 MHz, C₇D₈): δ 41.67 (s). ¹H NMR spectra at variable temperature are shown in Figure 1.

Details of the ab Initio Calculations. The ab initio calculations are performed with the GAUSSIAN 92 system of programs.¹⁴ A noncorrelated RHF-SCF description is used for preliminary studies, while the more accurate geometry optimizations are performed at the correlated MP2 level,¹⁵ which seems to be the current state of the art for this kind of systems.¹⁶ The geometries are optimized with the Schlegel method,¹⁷ using analytically computed gradients.

The 60 innermost electrons of the osmium atom are represented by an effective core potential (ECP) including relativistic contributions.¹⁸ The basis set for the metal atom is of triple-5 quality.¹⁸ The 6-31G**

(12) Since relaxation rates are additive, the total relaxation rate of a given hydride nucleus may be obtained by summing the contributions from the separate dipole-dipole interactions of this nucleus with all other nuclei according to the equation

$$R_{\text{TOT}} = \sum_{l} R_{\text{H(m)H}l} + \sum_{l} R_{\text{H(I)H}l} + \sum_{l} R_{\text{HM}l} + \sum_{l} R_{\text{HP}l} + \sum_{l} R_{\text{HP}l}$$

$$R_{\rm HX} = K_{\rm X} \, {\rm \AA}^6 \, {\rm s}^{-1}/r^6$$

where $K_{\rm X}$ = constant for the nuclei × and r = internuclear distance in A. The values of K_X for the nuclei of H. Os and P were taken from ref 11. The constants for ¹⁰B and ¹¹B were evaluated using Halpern's method.¹¹ Solving for these nuclei leads to a values of $K_X = 14.52$ for ¹⁰B (abundance, 18.83%) and 38.14 for ¹¹B (abundance, 81.17%)

- (13) For fluxional polyhydrides where inequivalent hydrides are rapidly exchanging, the relaxation rate is the weighted average of the relaxation rate for each type of hydride.11
- (14) GAUSSIAN 92, Revision C, Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andrés, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, G.; Martin, R. L.; Fox, D. J.; Defreus, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian
- D. J., Deneus, D. J., Baker, J., Stewart, J. J. F., Pople, J. A. Gaussian Inc. Pittsburgh PA, 1992.
 Möller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
 (16) (a) Lin, Z.; Hall, M. B. Inorg. Chem. 1991, 30, 2569. (b) Lin, Z.; Hall, M. B. J. Am. Chem. Soc. 1992, 114, 2928. (c) Maseras, F.; Li, X. K.; Koga, N.; Morokuma, K. J. Am. Chem. Soc., in press. Schlegel, H. B. J. Comput. Chem. 1982, 3, 214.
- (18) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.

⁽¹¹⁾ Desrosiers, P. J.; Cai, L.; Lin, Z.; Richards, R.; Halpern, J. J. Am. Chem. Soc. 1991, 113, 4173.

basis set¹⁹ is used for the B and H atoms, excepting the H atoms of triphosphine ligands which are described by the 3-21 G basis set.²⁰ For the P atoms an ECP complement with a valence double- ζ basis set are used.²¹

Acknowledgment. We thank the DGICYT (Projects PB 92-0092 and PB 92-0621, Programa de Promoción General del Conocimiento) and the EU (Project: Selective Processes and Catalysis involving Small Molecules) for financial support. This work greatly benefited from an Acción Integrada Hispano-Francesa (1993/186 B). We thank the European Center for Parallelism of Barcelona, CEPBA, for providing computational time in a CONVEX C-3480 computer.

 ^{(19) (}a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724. (b) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213. (c) Dill, J. D.; Pople, J. A. J. Chem. Phys. 1975, 62, 2921.

⁽²⁰⁾ Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102,

^{939.} (21) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.